兵庫県公立高校入試① ~数学~

a0960_008503

こんにちは!開進館の山本です。

3月12日(月)は兵庫県公立高校普通科入試でした。

本日の朝刊に問題が掲載されておりますので、

確認いただいた保護者の方も多いかと思われます。

 

ただ、問題を見ただけでは、よく分からないという方も多いはず。

簡単になりますが、問題の説明をします。

まだ、入試は早いと思われる学年の方も、是非とも確認ください。

今後の勉強の役に立つはずです!

 

あくまでも、山本の独断と偏見です!

あと、とっても長文です。時間があるときにじっくり読んでいただければと思います。

 

 

大問1 小問集合7題

(1) 中1レベル 正負の加減

(2) 中1レベル 正負の加減

(3)中3レベル 平方根の計算

(4)中3レベル 2次方程式の計算。解の公式。

(5)中1レベル 反比例

(6)中3レベル 円周角の定理

(7)中1レベル 度数分布表

例年通りの問題レベルで、7題出題されていました。

どの問題もひねったところはなく、基礎練習が繰り返されていれば、

十分に問題を解くことができました。

!point!

大問1は決して難しい問題は出ません。

教科書の基礎がきっちりと解けるようにしていれば、満点が取れます。

ここだけで28点分…かなり大きいです。

 

大問2 方程式2題

(1)中2レベル 連立方程式の利用

(2)思考力問題

(2)の問題は思考力問題でした。

方程式を利用して解くのであれば、高1レベル。

しかし!この問題は、算数の問題と捉えれば、小学生でも解くことができる問題です。

兵庫県の入試問題は、数学を使わずに、算数を使って解くことができれば、

とーっても簡単になります!

校内生向けに解説動画を用意いたしますので、しばしお待ちを…。

!point!

思考力問題は「算数」の考え方が大切です。

小学生のころに学んだ内容を活かすチャンスです。

 

大問3 関数4題

(1)中3レベル 放物線 aを求める

(2)中3レベル 放物線 直線の式

(3)中3レベル 放物線の利用

(4)中3レベル ・・・むちゃ難しい!

(1)~(3)においては、放物線の問題における基本でした。

ただ、(3)の問題は「媒介変数」を使う問題で少し難しかったかもしれませんが、

COACHの中に出題されている問題です。

開進館の数学のテキストは兵庫県入試に合わせて作成したオリジナルテキストです。

きっちりと定着ができている方は十分に解くことができたはずです。

 

あと、(4)は…無理です。諦めましょう!

単なる選択肢の問題ですが、1つ1つを確認していくことは非常に手間です。

アから順番にチェックをしていくと相当な時間が掛かります。

※尖った見方をしますと、最後の問題は受験生の時間を掛けさせたいものです。
※つまり、このタイプの問題は前半に答えがあると、短時間で解けてしまう…
※よって、ウかエあたりが答えでは…なんて邪推することもできます。

!point!

得点できる問題をきっちりと解くこと。

受験に合格することが大切で、全部の問題を解く必要はナシ!

 

大問4 一次関数の利用 動点4題

(1)算数レベル 速さを求める

(2)算数レベル 三角形の面積を求める

(3)中2レベル 一次関数の利用

(4)思考力問題

(1)・(2)の問題は一次関数の考え方を用いることとなりますが、

算数で端的に考えることもできました。

また、(3)は計算をするというよりは、「グラフをきっちり書いて視覚で捉える」ことができれば、

一次関数の計算式を全く使うことなく解くことができます。

(4)も思考力問題で難しいのですが、

これも、(3)同様にグラフをきっちり書いて視覚で捉えることを活用できれば、

また、周期に気づくことができれば対応は十分にできます。

!point!

中学校の数学として解くと時間が掛かりすぎてしまう。

今まで学んだことを駆使すれば、「気付き」を見つけることができます。

この「気付き」は小学生の間に育むことができる大事な点です。

 

 

大問5 平面図形 4題

(1)中2レベル 証明問題

(2)中3レベル 三平方の定理

(3)①中3レベル 相似の活用

(3)②中3レベル 相似の活用

今年の平面図形の問題は例年に比べると簡単でした。

証明問題も例年のレベルと変わらず。(2)も三平方の定理で一瞬で解けます。

(3)においては、難しい問題であったものの、例年に比べれば、

チャレンジすることはできたかと思います。(と言っても、避けるのが吉です。。。)

!point!

証明問題をきっちり解けるようにしておくこと。

三平方の定理をきっちり解けるようにしておくこと。

ここだけを抑えておき、難しい問題はパスすべき!

 

大問6 場合の数・確率 4題

(1)算数レベル 場合の数

(2)①思考力問題

(2)②中2レベル 確率

(2)③思考力問題

昨年の場合の数・確率が計算で解けてしまう簡単な問題でしたが、

今年は突然レベルがあがり、非常に難問になりました。

こういった問題が出たときは、(1)と(2)①で諦めて②・③は解かないことが大事です。

全体を通してみると難問だとしても、

最初の1問、2問は解くことができるのが兵庫県の入試問題です。

!point!

思考力で対応できる問題は必ずあります。

全問を解く必要はありませんが、必ず最初の1、2問は解けます。

 

大問7 思考力問題 5題

(1)①中1レベル 立体図形

(1)②中1レベル 立体図形

(2)中1レベル 立体図形

(3)中3レベル 立体図形と2次方程式

(4)中1レベル 立体図形

立体図形をベースとした思考力問題が出てきました。

冷静に解くことができれば最初の1・2問は対応できたと思いますが、

例年兵庫県は立体図形をあまり出していないこともあり、

困惑した受験生も多かったのではないかと推測できます。

中学1年生の内容で解くことはできるのですが、

これを完答できた生徒は非常に少ないでしょう。

大問3以降、似通ったことをお伝えすることが多いのですが、

「解ける問題をしっかり解くこと」

「100点は目指さない。捨てる問題は捨てること」

この2点が非常に大事になってくることでしょう。

!point!

立体図形の基本をしっかりと構築しておくこと。

中1の範囲≠中3生も解ける。思考力はかなり難しいです。

 

長文をお読みいただきありがとうございました。

次回は理科について、更新したいと思います。